Tácticas  matemáticas. Mathematical  ploys.⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

in #hive-1963875 months ago
EspañolEnglish

 

 

 

 

 

   

Enunciado

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solución

 

       

x + 1/x = √ 2   ,

          1
qué vale  x 777  +  ――
          x 777


   Este problema se puede resolver empleando las propiedades de las funciones simétricas.

Una función es simétrica, si intercambiando cualesquiera de sus variables el valor de la función no varía

x = α ,  1/x = β

α + β = √ 2   
α β = 1 

 

 

 

 

 

 

 

 

 

 

 

   


Como es bien conocido, relaciones de Cardano-Vieta , α y β son raíces de la ecuación,

ξ 2 − √ 2   ∙ ξ + 1 = 0

α = √ 2   /2 ∙ ( 1 + i ) = е i ∙ π/4
 β = √ 2   /2 ∙ ( 1 − i ) = е i ∙ π/4


Sólo resta evaluar α y β elevadas a la 777 potencia,

777 = 4 ∙ 194 + 1

е π ∙ 777/4 = е π ∙ 194 ∙ е π/4 = е π ∙ 2 ∙ е π/4 = е π/4

∴   x 777 = x


De dónde,

1 
x 777  +  ―― =  √ 2   
x 777


EnglishEspañol

 

 

 

 

 

   

Statement

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer

       

x + 1/x = √ 2   ,

          1
calculate  x 777  +  ――
          x 777


   This is a problem on symmetric functions.

A function is symmetric if the exchange of its variables does not alters its value

x = α ,  1/x = β

α + β = √ 2   
α β = 1 

 

 

 

 

 

 

 

 

 

 

 

   


As it is well known, Vieta's formula , α and β are roots of the equation,

ξ 2 − √ 2   ∙ ξ + 1 = 0

α = √ 2   /2 ∙ ( 1 + i ) = е i ∙ π/4
 β = √ 2   /2 ∙ ( 1 − i ) = е i ∙ π/4


Evaluating α and β to the 777 power,

777 = 4 ∙ 194 + 1

е π ∙ 777/4 = е π ∙ 194 ∙ е π/4 = е π ∙ 2 ∙ е π/4 = е π/4

∴   x 777 = x


Whence,

1 
x 777  +  ―― =  √ 2   
x 777



Media

Sort:  

Congratulations @j2e2xae! You have completed the following achievement on the Hive blockchain And have been rewarded with New badge(s)

You received more than 800 upvotes.
Your next target is to reach 900 upvotes.

You can view your badges on your board and compare yourself to others in the Ranking
If you no longer want to receive notifications, reply to this comment with the word STOP