Tácticas  matemáticas. Mathematical  ploys.⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

in #hive-1635214 months ago
EspañolEnglish

 

 

 

 

 

 

   

Enunciado

 

 

 

 

       

x + 1/x = √ 3   ,

          1
qué vale  x 2024  +  ――
            x 2024

   Este tipo de problemas pertenecen al ámbito de las funciones simétricas y aunque es posible solucionarlos de una forma algebraica , vamos a seguir la senda del análisis combinatorio .

Preliminares

 

 

 

 

 

 

   

 

 

 

 

 

 

       

x = α ,  1/x = β


-a1 = (1) = ∑ α = α + β =  √ 3   

a2 = (12 ) = ∑ α β = α β = 1 


Nos facilitan los valores de las funciones simétricas elementales (1), (12).
Nos piden determinar el valor de la suma de potencias de índice 2024.

s2024 = (2024) = ∑α 2024 = α 2024 + β 2024

Desarrollo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

   La relación entre las funciones simétricas elementales y la suma de potencias es la razón de ser de las identidades de Newton ,

sna1sn-1 + a2sn-2 − ... + (−1)nnan = 0

Esta ecuación nos permite establecer una relación de recurrencia en sn

s1 = a1              
...             
sn = a1sn-1a2sn-2 + ... + (−1)n + 1nan

    s1 = − √ 3   
    s2 = (− √ 3    ∙ − √ 3   ) − (2 ∙ 1) = 1

     an = 0  , n > 2

    sn+2 = − √ 3    ∙ sn+1sn

Hemos obtenido una recurrencia de orden dos, su ecuación característica determina el término general de la sucesión,

p2 + √ 3   p + 1 = 0

Con soluciones,

p = e ± i ∙5/6∙π

De la naturaleza de las soluciones de la ecuación característica inferimos que la sucesión es periódica,

5/6 ∙ n = 2k   
5n = 12k
n = 12

 ∴   sn+12 = sn    
sn+6  = -sn

Resolución

 

 

   

 

 

Solución

       

2024 ≡ 8 mod 12

s2024 = s8 = - s2

s2024 = - 1


EnglishEspañol

 

 

 

 

 

 

   

Statement

 

 

 

 

       

x + 1/x = √ 3   ,

          1
calculate  x 2024  +  ――
            x 2024

   This is a problem on symmetric functions , solvable by pure algebraic methods, but here we are taking the combinatorial route and seeing...

Prelude

 

 

 

 

 

 

   

 

 

 

 

 

 

       

x = α ,  1/x = β


-a1 = (1) = ∑ α = α + β =  √ 3   

a2 = (12 ) = ∑ α β = α β = 1 


We know value of the elementary symmetric functions (1), (12).
We are asked for the value of the powers sum with 2024 index .

s2024 = (2024) = ∑α 2024 = α 2024 + β 2024

Development

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

   Symmetric elementary functions related to powers sum ones by means of the Newtonian identities ,

sna1sn-1 + a2sn-2 − ... + (−1)nnan = 0

That is a recurrence relation on sn ,

s1 = a1              
...             
sn = a1sn-1a2sn-2 + ... + (−1)n + 1nan

    s1 = − √ 3   
    s2 = (− √ 3    ∙ − √ 3   ) − (2 ∙ 1) = 1

     an = 0  , n > 2

    sn+2 = − √ 3    ∙ sn+1sn

We have a recurrence of second order, the general term is formed with solutions of its characteristic equation ,

p2 + √ 3   p + 1 = 0

p = e ± i ∙5/6∙π

We can infer that the sequence is periodic as the solutions of its charaterisitic equation .

5/6 ∙ n = 2k   
5n = 12k
n = 12

 ∴   sn+12 = sn    
sn+6  = -sn

Solution

 

 

   

 

 

Answer

       

2024 ≡ 8 mod 12

s2024 = s8 = - s2

s2024 = - 1



Media

Sort:  

Congratulations @j2e2xae! You have completed the following achievement on the Hive blockchain And have been rewarded with New badge(s)

You distributed more than 300 upvotes.
Your next target is to reach 400 upvotes.

You can view your badges on your board and compare yourself to others in the Ranking
If you no longer want to receive notifications, reply to this comment with the word STOP